If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3^-4x-5=(1/27)^2x+10
We move all terms to the left:
3^-4x-5-((1/27)^2x+10)=0
Domain of the equation: 27)^2x+10)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-4x-((+1/27)^2x+10)-5+3^=0
We add all the numbers together, and all the variables
-4x-((+1/27)^2x+10)=0
We multiply all the terms by the denominator
-4x*27)^2x+10)-((+1=0
Wy multiply elements
-108x^2+1=0
a = -108; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-108)·1
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*-108}=\frac{0-12\sqrt{3}}{-216} =-\frac{12\sqrt{3}}{-216} =-\frac{\sqrt{3}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*-108}=\frac{0+12\sqrt{3}}{-216} =\frac{12\sqrt{3}}{-216} =\frac{\sqrt{3}}{-18} $
| 2/3+1/6y=5/6y+1/3 | | -11-u/3=-2 | | 2x+29=6x-26 | | -4(4t-8)=-16 | | 4/7+2p=27 | | 5+2(y+1)=2y | | v7=98 | | 2n-10=16 | | 5(x+1)=3x+2x+5 | | 3^7x=81^x+9 | | −1/4a−4=7/4a−3 | | 8(5+x)=40 | | x2=34 | | 8/x=59.2 | | -12=2n-4=8 | | y+6=29 | | 3+y=1/4 | | 24+2*z=26 | | 4(k-2=2(k-9) | | 24+y=26 | | Y=4x+5;x=1/2 | | (x+4)+(x-2)=26 | | -7=9+2x=5 | | 4/n=12/24 | | X(5.50+100(6.25)=6x | | Y=6-2x;x=11 | | 29=y÷6 | | 50+10x=100-20 | | (1/5)^-4x=25 | | .5=x | | 34a+13=250 | | 49^2x=343 |